경사하강법1 경사하강법(Gradient Descent) 1차 미분계수를 이용해 함수의 최소값을 찾아가는 방법. 함수 값이 낮아지는 방향으로 독립변수 값을 변형시켜 가면서 최소 함수값을 갖도록 하는 독립 변수 값을 찾는 방법이다. 최소 함수값을 찾는 과정에서 미분계수가 0인 지점을 찾는게 아닌 gradient descent를 이용하는 이유는 실제 분석에서 맞딱드리게 되는 함수들은 닫힌 형태(closed form)가 아니거나 함수의 형태가 복잡해 (가령, 비선형함수) 미분계수와 그 근을 계산하기 어려운 경우가 많다. 실제 미분계수를 계산하는 과정을 컴퓨터로 구현하는 것에 비해 gradient descent는 컴퓨터로 비교적 쉽게 구현할 수 있다. 데이터 양이 매우 큰 경우 gradient descent와 같은 iterative한 방법을 통해 해를 구하면 계산량 .. 2022. 1. 21. 이전 1 다음