본 글은 주재걸교수님의 인공지능을 위한 선형대수 강의를 듣고 정리한 내용입니다.
- Linear Equation
Other expression method
- Linear System : Set of Equations
- Identity Matrix(In)
- A square matrix whose diagonal entries are all 1's, and the other entries are zeros.
- Inverse Matrix
- For a square matrix A, its inverse matrix A^-1
- A^-1A = AA^-1 = In
- Solving Linear System via Inverse Matrix
- Non-Invertible Matrix A for 𝐴𝐱 = 𝐛
- if A is invertible, the solution is x = A^-1b
- ad - bc is called the determinant of A, detA
- detA determines whether A is invertible
- if 𝐴 is non-invertible, 𝐴𝐱 = 𝐛 will have either no solution or infinitely many solutions.
- Rectangular Matrix 𝐴 in 𝐴𝐱 = b
- Recall 𝑚 = #equations and 𝑛 = #variables.
- 𝑚 < 𝑛: more variables than equations
- Usually infinitely many solutions exist (under-determined system).
- 𝑚 > 𝑛: more equations than variables
- Usually no solution exists (over-determined system).
출처: https://www.edwith.org/ai251
참고자료
https://www.cuemath.com/algebra/linear-equations/
https://blog.naver.com/PostView.naver?blogId=gpark0303&logNo=221780548151&parentCategoryNo=&categoryNo=10&viewDate=&isShowPopularPosts=false&from=postView
'Study > 선형대수학' 카테고리의 다른 글
2.5 선형변환 (0) | 2021.12.29 |
---|---|
2-4. 부분공간의 기저와 차원 (0) | 2021.12.29 |
2-3. 선형독립과 선형종속 (0) | 2021.12.28 |
2-2. 선형결합 (0) | 2021.12.28 |
1. 선형대수의 기초 (0) | 2021.12.27 |
댓글