본문 바로가기
Study/선형대수학

2-1. 선형방정식과 선형시스템

by EDGE-AI 2021. 12. 27.

본 글은 주재걸교수님의 인공지능을 위한 선형대수 강의를 듣고 정리한 내용입니다.

 

  • Linear Equation

Other expression method

 

  • Linear System : Set of Equations

  • Identity Matrix(In)
    • A square matrix whose diagonal entries are all 1's, and the other entries are zeros.
  • Inverse Matrix
    • For a square matrix A, its inverse matrix A^-1
    • A^-1A = AA^-1 = In
      Inverse Matrix
  • Solving Linear System via Inverse Matrix

 

  •  Non-Invertible Matrix A for 𝐴𝐱 = 𝐛
    • if A is invertible, the solution is x = A^-1b
    •  
    • ad - bc is called the determinant of A, detA
    • detA determines whether A is invertible
    • if 𝐴 is non-invertible, 𝐴𝐱 = 𝐛 will have either no solution or infinitely many solutions.

 

  • Rectangular Matrix 𝐴 in 𝐴𝐱 = b
    • Recall 𝑚 = #equations and 𝑛 = #variables.
    • 𝑚 < 𝑛: more variables than equations
      • Usually infinitely many solutions exist (under-determined system).
    • 𝑚 > 𝑛: more equations than variables
      • Usually no solution exists (over-determined system).

 

 

 

출처: https://www.edwith.org/ai251 

 

인공지능을 위한 선형대수 강좌소개 : edwith

- 주재걸 교수

www.edwith.org

참고자료

https://www.cuemath.com/algebra/linear-equations/ 

https://blog.naver.com/PostView.naver?blogId=gpark0303&logNo=221780548151&parentCategoryNo=&categoryNo=10&viewDate=&isShowPopularPosts=false&from=postView 

 

 

'Study > 선형대수학' 카테고리의 다른 글

2.5 선형변환  (0) 2021.12.29
2-4. 부분공간의 기저와 차원  (0) 2021.12.29
2-3. 선형독립과 선형종속  (0) 2021.12.28
2-2. 선형결합  (0) 2021.12.28
1. 선형대수의 기초  (0) 2021.12.27

댓글