본문 바로가기
Study/선형대수학

4-4. 대각화

by EDGE-AI 2022. 1. 5.

본 글은 주재걸교수님의 인공지능을 위한 선형대수 강의를 듣고 정리한 내용입니다.

 

Diagonalization

  • a given square matrix 𝐴 ∈ ℝ𝑛×𝑛 into a diagonal matrix via the following form

  • 𝑉 ∈ ℝ𝑛×𝑛 is an invertible matrix and 𝐷 ∈ ℝ𝑛×𝑛 is a diagonal matrix. This is called a diagonalization of 𝐴.
    • V는 A와 같은 dimension의 정사각행렬
  • 𝐷 = 𝑉^(−1)𝐴𝑉 ⟹ 𝑉𝐷 = 𝐴𝑉

𝐴𝑉 = 𝑉𝐷 ⟺ [𝐴𝐯1 𝐴𝐯2 ⋯ 𝐴𝐯𝑛] = [𝜆1𝐯1 𝜆2𝐯2 ⋯ 𝜆𝑛𝐯𝑛] => 𝐴𝐯1 = 𝜆1𝐯1, 𝐴𝐯2 = 𝜆2𝐯2,  …,  𝐴𝐯𝑛 = 𝜆𝑛𝐯𝑛

∴ 𝐯1, 𝐯2, …, 𝐯𝑛 should be eigenvectors and 𝜆1, 𝜆2, …, 𝜆𝑛 should be eigenvalues.

 

 

  • 𝑉 to be invertible, 𝑉 should be a square matrix in ℝ𝑛×𝑛 , and 𝑉 should have 𝑛 linearly independent columns.
  • Recall columns of 𝑉 are eigenvectors. Hence, 𝐴 should have 𝑛 linearly independent eigenvectors.
  • • It is not always the case, but if it is, 𝐴 is diagonalizable.

 

 

출처: https://www.edwith.org/ai251 

'Study > 선형대수학' 카테고리의 다른 글

5-1 특이값 분해  (0) 2022.01.07
4-5. 고유값 분해와 선형변환  (1) 2022.01.06
4-3. 특성방정식  (0) 2022.01.05
4-2. 영공간과 직교여공간  (0) 2022.01.05
4-1. 고유벡터와 고유값  (0) 2022.01.05

댓글