본 글은 Havard University Statistics 110 강의를 듣고 정리한 내용입니다.
CDF : F(x) = P(X ≤ x), x ∈ R
Find P(1 < x ≤ 3) using F
P(X ≤ 1) + P(1 < X ≤ 3) = P(X ≤ 3)
∴ P(1 < X ≤ 3) = F(3) - F(1) -> P(a < X ≤ b) = F(b) - F(a)
Properties of CDF
- Increasing
- Right Continuous
- Left Continuous 하지는 않음
- F(X) - > 0 as X -> -∞, F(X) -> 1 as x -> ∞
Independent of random variables
X, Y are indep r.v.s if P(X≤x, Y≤y) = P(X≤x)P(Y≤y) for all x, y
Discrete case: P(X=x, Y=x) = P(X=x)P(Y=y)
Averages(Means, Expected values)
Discrete r.v.s
- {1, 2, 3, 4, 5, 6} -> (1+2+3+4+5+6) / 6 = 3.5
- 1, 2, ..., 99, 100 -> 101 * 50 = 5050
- 1/n ∑[j = 1~n] j = (n+1)/2 arithmetic series
- {1, 1, 1, 1, 3, 3, 5}
- add divide by 8
- 5/8 * 1 + 2/8 * 3 + 1/8 * 5 (Weighted sum)
- Average of a discrete r.v. X E(X) = ∑ xP(X=x), summed over x with P(X=x) > 0
Bernolli r.v.s
X ~ Bern(p), E(X) = 1*P(X=1) + 0*P(X=0) = p
x = 1 if A occur, 0 else (indicator r.v.)
then E(X) = P(A)
Binomal r.v.s
X ~ Bin(n,p)
Linearity
E(X+Y) = E(X)+E(Y) even if X, Y are dependent (독립이 아니여도 성립)
E(cX) = cE(X) if c is a const
Redo Binomial
X = X_1+ ... +X_n where X_i~Bern(p)
E(X) =n * E(X_1) = np
초기하분포(Hypergeometric)
Ex. 5 card hand, X = number of aces. Let Xj be indicator of jth card being ace, 1 ≤ j ≤ 5
E(X) = E(X1+...+X5) = E(X1) + ... + E(X5) = 5E(X1) = 5 * P(1st card ace) = 5/13, even though Xj's are dependent
expected value of 초기화분포 = 이항분포의 기댓값 계산방법
Geometric(기하분포)
Geom(p) : indep Bern(p) trials, number of failure before success, Let X~Geom(p), q = 1-p
{F,F,F,F,F,S) -> P(X=S) = q^5 p
PMF : P(X=k) = q^k p, k ∈ {0, 1, 2, ...}
기하분포의 기댓값
Story proof
Let c = E(X)x = 0 * p + (1+c) * q = q + cq
1+c : 하나의 실패 이후 재시작.
∴ c = q/p
'Study > 통계학' 카테고리의 다른 글
11. 포아송분포 (The Poisson distribution) (0) | 2022.01.25 |
---|---|
10. 기댓값 (Expectation Continued) (0) | 2022.01.24 |
8. 확률변수와 확률분포 (Random Variables and Their Distributions) (0) | 2022.01.20 |
7. 도박꾼의 파산 문제와 확률변수 (Gambler's Ruin and Random Variables) (0) | 2022.01.20 |
6. Monty Hall 문제와 심슨의 역설 (Monty Hall, Simpson's Paradox) (0) | 2022.01.18 |
댓글